Affiliation:
1. Voronezh State University of Engineering Technologies
Abstract
The development of resource-saving technologies for obtaining pure sea buckthorn oil and its compositions with other vegetable oils from dried crushed sea buckthorn cake is an urgent task. Sea buckthorn oil and its mixtures are obtained by extraction and simultaneous heat exposure, electrophysical methods of the process intensifying being considered in this case. Currently, there are no reliable data on the thermo- and electrophysical properties of dried crushed sea buckthorn cake at atmospheric pressure in the literature. Therefore, experimental studies of the thermo- and electrophysical properties of dried crushed sea buckthorn cake in a wide range of changes in state parameters are of great importance for solving theoretical and practical problems. The nature of the change in the specific heat, thermal conductivity and thermal diffusivity in the temperature range 20 ... 80 ° C and humidity 7.0 ... 17.5% was determined to be linear. In this case, the specific heat and the coefficient of thermal conductivity increase with increasing temperature while the coefficient of thermal diffusivity decreases. The nonlinear dependence of the dielectric loss coefficient on moisture was found to be due to a variety of forms of moisture binding in the sea buckthorn cake particles. It is obvious that with an increase in the cake temperature and humidity, the dielectric loss coefficient monotonically nonlinearly increases in the range of 0.46 ... 9.72. Empirical equations that make it possible to reliably determine the value of the specific mass heat capacity, thermal conductivity coefficients, thermal diffusivity and dielectric losses of dried crushed sea buckthorn cake from temperature and humidity in the range of 7.0 ... 17% with respect to absolutely dry matter were obtained as a result of studies of thermo- and electrophysical properties..
Publisher
FSBEI HE Voronezh State University of Engineering Technologies
Subject
General Agricultural and Biological Sciences
Reference20 articles.
1. Ivaniov E., Blakov M., Terentjeva M., Grygorieva O. et al. Biological properties of sea buckthorn (hippophae rhamnoides l.) Derived products. Acta Sci. Pol. Technol. Aliment. 2020. no. 19(2). pp. 195–205. doi: 10.17306/J.AFS.0809
2. Ilhan G., Gundogdu M., Karlovi?c K., ?idovec V. et al. Main Agro-Morphological and Biochemical Berry Characteristics of Wild-Grown Sea Buckthorn (Hippophae rhamnoides L. ssp. caucasica Rousi) Genotypes in Turkey. Sustainability. 2021. no. 13. pp. 1198. doi: 10.3390/su13031198
3. Tun Aye, Baranov I.V., Krylov V.A., Tambulatova E.V. et al. Thermo-physical properties of avocado form Southeast Asia. Bulletin of the International Academy of Refrigeration. 2020. no. 2. pp. 60–64. doi:10.17586/1606–4313–2020–19–2–60–64
4. Antipov S.T., Ovsyannikov V.Yu., Korchinsky A.A. Investigation of the process of cooling the blood of cattle. Proceedings of VSUET. 2017. vol. 79. no. 1. pp. 11–14. doi: 10.20914 / 2310–1202–2017–1–11–14 (in Russian).
5. Tsydendorzhiev B.D., Tsydendorzhieva G.R., Shagdyrov I.B., Labarov B.D. Research of regularities of changes in thermophysical characteristics of moist material. Vestnik VSGUTU. 2017. no. 4 (67). pp. 92–96. (in Russian).