Features of diffusion processes in the preparation of prepregs by the method of layered application of components

Author:

Cheremukhina I. V.1ORCID

Affiliation:

1. Engels Institute of Technology (branch) Saratov State Technical University named after Yuri Gagarin

Abstract

The modern production of products made of composite materials based on thermosetting binders is mainly based on the use of pre – impregnated reinforcing technical threads-prepregs. The binder used for such semi-finished products must meet two important technological requirements: have a low reactivity (high viability) when stored in the temperature range from -5 to +25 ° C and the ability to adjust the curing time at the molding temperatures of the product. To eliminate the disadvantages of the traditional method of obtaining polymer composite materials, to improve their strength characteristics and reduce the cost of the resulting reinforced composites, it is proposed to use the method of layered application of components. The essence of the method consists in layer-by-layer impregnation of the fibrous filler with a binder solution, and then a developed curing system consisting of an amine hardener that prevents the interaction of the hardener with the resin under storage conditions and protective polymer emulsions. The binder-filler system is activated only at an elevated temperature under curing conditions. It is established that the optimal parameters for processing by direct pressing of the pre-pegs components obtained by the method of layer deposition are a pressure of 15 MPa and a temperature of160-170 ?С with a pressure exposure of 15 minutes. If you get products by winding, then for such products, heat treatment for 6 hours at a temperature of 120 ?С is optimal. In the conditions of forming products, that is, at an elevated temperature and at an increased pressure, the mutual diffusion of components occurs due to the movement of oncoming flows. Oligomeric molecules from the resin volume diffuse from the inner layer to the outer one, and the components of the curing system meet them from the outer layer to the inner one. The method of layered application of components makes it possible to create a macroheterogenic system of interpenetrating polymer meshes in the contact area of sequentially applied layers. The result of the research is an increase in the shelf life, the viability of prepregs (up to 10 days) and an improvement in the complex of physical and mechanical properties of composites: the destructive stress during static bending increases to 60 %, during dynamic bending (impact) - up to 50 %. The use of carboxymethylcellulose as a protective polymer provides higher indicators of the studied properties than when using butadiene styrene latex as a protective polymer..

Publisher

FSBEI HE Voronezh State University of Engineering Technologies

Subject

General Agricultural and Biological Sciences

Reference20 articles.

1. Kuznetsova I.O., Grebeneva T.A. Regulation of the viability of epoxy SMC prepregs. Bulletin of Science. 2020. vol. 2. no. 1. pp. 210-217. (in Russian).

2. Rumyantsev A.N., Filippov V.N. Polymer composite materials and their application in practice. Bulletin of the Pskov State University. Series: Natural and physical and mathematical sciences. 2019. no. 14. pp. 116-121. (in Russian).

3. Dolinskaya R.M. Technology and equipment for the synthesis and processing of polymers. 2012. (in Russian).

4. Studentsov V.N., Karpova I.V. Method of obtaining reinforced polymeric materials. Patent RF, no. 2135530, 1999.

5. Kochurov D.V. High-strength polymer composite materials. International student scientific bulletin. 2018. no. 5. pp. 167-167. (in Russian).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3