Abstract
Smart materials are a group of materials that exhibit the ability to change their composition or structure, their electrical and/or mechanical properties, or even their functions in response to an external stimulus such as heat, light, electricity, pressure, etc. Some of the advantages of these materials are: lightweight, flexibility, low cost of production, high energy density, fast response and compact size. One of the promises in the area of smart materials can be found in “smart polymer”. Polymers have many attractive characteristics, such as: lightweight, inexpensiveness, fractures tolerant, and pliable. Furthermore, they can be configured into almost any conceivable shape and their properties can be tailored according to the required needs. The capability of electroactive polymers (EAPs) to respond to electrical stimuli with a mechanical response, is attracting the attention of the scientific community from a wide range of disciplines. Biopolymers in recent decades have been studied as potential electroactive materials. These groups of polymers are extracted from a natural source; thus, they are eco-friendly, additionally they stand as a cheaper solution for the development of smart materials.The present manuscript will explore some of its applications as EAPs.
Publisher
FSBEI HE Voronezh State University of Engineering Technologies
Subject
General Agricultural and Biological Sciences
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献