Facial image noise classification and denoising using neural network

Author:

Tripathi Milan

Abstract

Image denoising is an important aspect of image processing. Noisy images are produced as a result of technical and environmental flaws. As a result, it is reasonable to consider image denoising an important topic to research, as it also aids in the resolution of other image processing issues. The challenge, however, is that the traditional techniques used are time-consuming and inflexible. This article purposed a system of classifying and denoising noised images. A CNN and UNET based model architecture is designed, implement, and evaluated. The facial image dataset is processed and then it is used to train, valid and test the models. During preprocessing, the images are resized into 48*48, normalize, and various noises are added to the image. The preprocessing for each model is a bit different. The training and validation accuracy for the CNN model is 99.87% and 99.92% respectively. The UNET model is also able to get optimal PSNR and SSIM values for different noises.

Publisher

Research and Development Academy

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3