Depletion of glutathione induced apoptosis and oxidative stress via the activation of TRPM2 channels in the microglia cells with Alzheimer’ disease model

Author:

ÇINAR Ramazan1

Affiliation:

1. Neuroscience Research Center (NOROBAM), Suleyman Demirel University

Abstract

Alzheimer’s disease is a common neurodegenerative disease. Microglia induces oxidative stress in the brain for engulfing bacteria and viruses. The accumulating data indicate that oxidative stress and apoptosis are two main actors for the induction of microglia activation-induced Alzheimer’s Disease. Oxidative stress is one of many triggers that activate the transient receptor potential melastatin 2 (TRPM2) channel. Glutathione (GSH) is a main cytosolic antioxidant in the mammalian cells. The GSH depletion via the activation of TRPM2 induces oxidative stress and apoptosis in neuronal cells. It has not yet been researched how GSH depletion via activation of TRPM2 affects oxidative stress and apoptosis in microglial cells with the Alzheimer's disease model. The BV2 cells divided into 5 groups as control, buthionine sulphoximine (BSO and 0.5 mM for 6 h), amyloid beta (1 uM for 72 h), amyloid beta+BSO, and amyloid beta+BSO+GSH (10 mM for 2 h). In the BSO group, the levels of apoptosis, mitochondrial membrane potential, cytosolic free oxygen reactive species (cyROS), caspase (Casps) -3, Casps -8, and Casps -9 were increased as compared to the control group, although cell viability level was decreased. The expression levels of TRPM2, Casps -3, Casps -9, Bax, Bcl-2, and PARP-1 were also increased in the BSO group. In addition, their levels were further increased in the amyloid beta and BSO+amyloid beta groups as compared to the BSO group. However, the changes were modulated in the BSO+amyloid beta+GSH group by the incubation of GSH. In conclusion, the depletion of GSH increased apoptosis and cyROS levels via activation of caspases and TRPM2 in the amyloid beta-induced microglia cells. The treatment of GSH may be a potential target on the apoptosis and oxidative stress in the amyloid beta-induced microglia cells.

Publisher

Journal of Cellular Neuroscience and Oxidative Stress

Subject

Cell Biology,Cellular and Molecular Neuroscience,Molecular Biology,Biochemistry,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3