Targeting the Bap1 protein of Vibrio cholerae for screening potent inhibitors and predicting the mutant protein stability: in silico analyses

Author:

,Gowtham KalidasORCID,Pranav Rithish J.ORCID,

Abstract

Background: Bap1 is reported to be a major protein in Vibrio cholerae which aids in biofilm formation. Hence, inhibition of the protein molecule can no longer support the colonization of bacteria and induction of point mutations at specific amino acid residues tend to reduce the protein stabilization. The aim of the study: To target this Bap1 structural protein for screening potent inhibitors of ligands by means of in silico analyses. Materials and methods: A total of 30 compounds divided into three groups such as synthetic antimicrobial drugs, phytochemicals and marine compounds comprising of ten ligands in each group were tested against Bap1. In addition to this, mutations were induced at GLN: 518, HIS: 520 and ASN: 679 positions to determine the stability of the mutant Bap1 protein using bioinformatic tools. Results: Of the 30 docked compounds, doxycycline, ichangin and Ageloxime D exhibited the highest binding affinities of -8.5 kcal/mol, -9.3 kcal/mol and -8.8 kcal/mol respectively from the three groups. The ADME properties show the druglikeness of the test compounds to be used for treatment procedures. Protein-ligand interactions were visualized which infer that both doxycycline and ichangin form five conventional hydrogen bonds while Ageloxime D could form three hydrogen bonds with different amino acid residues of the protein. Further, the van der Waals’ interactions are also found to be similar in number among doxycycline and ichangin whereas, it is less in case of Ageloxime D but, the π- interactions are high in this compound comparatively. The carbon-hydrogen bonding for these three compounds with the amino acid residues of the Bap1 protein have also been discussed. Conclusion: Thus, natural compounds can eventually replace the over use of synthetic drugs as antibiofilm agents. Also, inducing point mutations to this protein can potentially destabilize its structure.

Publisher

Belgorod National Research University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anti-quorum Sensing Activity and Bioactive Components of Marine-derived Bacteria;Journal of Pure and Applied Microbiology;2024-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3