Deblurring approach for motion camera combining FFT with α-confidence goal optimization
Author:
Lve Huang ,Lushen Wu ,Wenyan Xiao ,Qingjin Peng
Abstract
Sharp images ensure success in the object detection and recognition from state-of-art deep learning methods. When there is a fast relative motion between the camera and the object being imaged during exposure, it will necessarily result in blurred images. To deblur the images acquired under the camera motion for high-quality images, a deblurring approach with relatively simple calculation is proposed. An accurate estimation method of point spread function is firstly developed by performing the Fourier transform twice. Artifacts caused by image direct deconvolution are then reduced by predicting the image boundary region, and the deconvolution model is optimized by an α-confidence statistics algorithm based on the greyscale consistency of the image adjacent columns. The proposed deblurring approach is finally carried out on both the synthetic-blurred images and the real-scene images. The experiment results demonstrate that the proposed image deblurring approach outperforms the existing methods for the images that are seriously blurred in direction motion.
Publisher
Politechnika Wroclawska Oficyna Wydawnicza
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献