Numerical insights into the determinants of stent performance for the management of aneurysm with a visceral vessel attached
-
Published:2021
Issue:2
Volume:23
Page:
-
ISSN:1509-409X
-
Container-title:Acta of Bioengineering and Biomechanics
-
language:en
-
Short-container-title:Acta Bioeng Biomech
Author:
Zhongyou Li ,Chong Chen ,Yu Chen ,Zhenze Wang ,Wentao Jiang ,Xiaobao Tian
Abstract
Purpose: As the factors affecting the efficacy of the bare-metal stent in the treatment of aneurysm with a visceral vessel attached were not fully understood, we aimed to discuss the effects of different characteristics of the stent on the hemodynamics and flexibility in the treatment of the aneurysm. Methods: Single-layer (with different strut widths) and multi-layer (with a different number of struts) stent models divided into three porosity groups, with porosities of 72.3, 60.5, and 52.4%, were modeled for a comparison of their hemodynamic isolation and flexibility performance via computational fluid dynamics and finite element methods. Results: The velocity and timeaveraged wall shear stress decreased more noticeably with multi-layer stent interventions. A higher oscillatory shear index and relative residence time occurred at the aneurysmal sac wall after multi-layer stents were employed. Time-averaged wall shear stress on the aneurysmal wall decreased with an increase in the number of struts or a decrease in pore size, but oscillatory shear index and relative residence time increased as the number of struts increased or the pore size decreased. Besides, all stents affect the branch patency slightly. In the bending test, when the porosity exceeded 60.5%, multi-layer stents were more flexible. Conclusion: The number of struts or pore size of stent dominated the isolation in the management of the aneurysm and affected the flexibility significantly when the porosity was below 60.5%. These findings may contribute to the special design of the stent in the treatment of such types of aneurysms.
Publisher
Politechnika Wroclawska Oficyna Wydawnicza
Subject
Biomedical Engineering,Biomaterials,Bioengineering,Biophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献