Numerical insights into the determinants of stent performance for the management of aneurysm with a visceral vessel attached

Author:

Zhongyou Li ,Chong Chen ,Yu Chen ,Zhenze Wang ,Wentao Jiang ,Xiaobao Tian

Abstract

Purpose: As the factors affecting the efficacy of the bare-metal stent in the treatment of aneurysm with a visceral vessel attached were not fully understood, we aimed to discuss the effects of different characteristics of the stent on the hemodynamics and flexibility in the treatment of the aneurysm. Methods: Single-layer (with different strut widths) and multi-layer (with a different number of struts) stent models divided into three porosity groups, with porosities of 72.3, 60.5, and 52.4%, were modeled for a comparison of their hemodynamic isolation and flexibility performance via computational fluid dynamics and finite element methods. Results: The velocity and timeaveraged wall shear stress decreased more noticeably with multi-layer stent interventions. A higher oscillatory shear index and relative residence time occurred at the aneurysmal sac wall after multi-layer stents were employed. Time-averaged wall shear stress on the aneurysmal wall decreased with an increase in the number of struts or a decrease in pore size, but oscillatory shear index and relative residence time increased as the number of struts increased or the pore size decreased. Besides, all stents affect the branch patency slightly. In the bending test, when the porosity exceeded 60.5%, multi-layer stents were more flexible. Conclusion: The number of struts or pore size of stent dominated the isolation in the management of the aneurysm and affected the flexibility significantly when the porosity was below 60.5%. These findings may contribute to the special design of the stent in the treatment of such types of aneurysms.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3