Biobased poly(3-hydroxybutyrate acid) composites with addition of aliphatic polyurethane based on polypropylene glycols

Author:

Zarzyka Iwona,Czerniecka-Kubicka Anna,Hęclik Karol,Dobrowolski Lucjan,Krzykowska Beata,Białkowska Anita_,Bakar Mohamed

Abstract

Poly(3-hydroxybutyrate) (P3HB) is the most important of the polyhydroxyalkanoates. It is biosynthesized, biodegradable, biocompatible, and shows no cytotoxicity and mutagenicity. P3HB is a natural metabolite in the human body and, therefore, it could replace the synthetic, hard-to-degrade polymers used in the production of implants. However, P3HB is a brittle material with limited thermal stability. Therefore, in order to improve its mechanical properties and processing parameters by separating its melting point and degradation temperature, P3HB-based composites can be produced using, for example, linear aliphatic polyurethanes as modifiers. The aim of the study is a modification of P3HB properties with the use of linear aliphatic polyurethanes synthesized in reaction of hexamethylene diisocyanate (HDI) and polypropylene glycols (PPG) by producing their composites. Prepared biocomposites were tested by the scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetry (TGA). Furthermore, selected mechanical properties were evaluated. It has been confirmed that new biocomposites showed an increase in impact strength, relative strain at break, decrease of hardness and higher degradation temperature compared to the unfilled P3HB. The biocomposites also showed a decrease in the glass transition temperature and the degree of crystallinity. Biocomposites obtained with 10 wt. % polyurethane synthesized with polypropylene glycol having 1000 g · mole–1 and HDI have the best thermal and mechanical properties.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3