Experimental and numerical analysis of blood flow in roughness impact-R test

Author:

Kopernik Magdalena,Kruczek Dawid,Kurtyka Przemysław,Pomorska Małgorzata,Major Roman

Abstract

Purpose The present study covers simulation of blood flow in a roughness impact R test model to anticipate the hemodynamic conditions of adhesion of blood elements to the modified surface. It was performed using numerical modelling of this process. The aim of these simulations is to create a surface morphology that stimulates the adhesion of blood elements to the surface of base plate of impact R test. Methods The morphology of base plate of impact R test was developed using a vacuum powder sintering of commercial purity titanium powder (CP-Ti) on Ti6Al7Nb substrate. The finite volume method (FVM) and disperse particle method (DPM) were applied to develop the target model of a roughness impact R test. The morphology of modified surfaces was documented with digital microscope and SEM (scanning electron microscopy). Results The impact R test developed using the two phase blood model performed on regularly structured base plate resulted in shear stress values higher than the analogous for the model lacking such modification. The most significant reduction in maximum values of shear stress occurred in case of the DPM model and especially in the model with regular structures. Conclusions The proposed models are very effective in modeling of the analysis of blood flow in roughness impact-R test.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3