Augmented reality visualization for aiding biopsy procedure according to computed tomography based virtual plan

Author:

Majak Marcin,Żuk Magdalena,Świątek-Najwer Ewelina,Popek Michał,Pietruski Piotr

Abstract

Purpose: The purpose of this study was to develop and verify an intraoperative module for supporting navigated biopsy procedures using optical see-through head-mounted display (HMD). Methods: Biopsy procedure including entry and endpoints of needle insertion was planned preoperatively having regard to the resection region segmentation and safety margin definition. Biopsy procedures were performed by two users using an intraoperative optical navigation module on a specially prepared brain phantom. Two visualization techniques were compared: an accurate augmented reality one, where a virtual plan is superimposed onto surgical field by using optical see-through HMD together with personalized calibration method and visualization on the external display. Results: Averaged errors from 24 trials using external display were 2.04 ± 0.83 mm for the first user and 2.69 ± 1.11 mm for the second one, while applying HMD 2.50 ± 0.93 mm (the first user) and 2.17 ± 0.82 mm (the second user), respectively. Conclusions: Proper usage of HMD visualization preceded by the personalized calibration allows the user to perform navigated biopsy procedure with comparable accuracy to its equivalent with the external display. Additionally, augmented reality visualization improves ergonomics and enables focusing on the surgical field without losing a direct line of sight with the field of view as it happens for external displays. However, ensuring high accuracy of augmented reality visualization still requires proper calibration and some user experience, which is challenging.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3