Research on the mill feeding system of an elastic variable universe fuzzy control based on particle swarm optimization algorithm

Author:

Tian Niu,Huang Song wei,He Li fang,Du Ling pan,Yang She ping,Huang Bin

Abstract

The grinding process in the concentrator is a part of the largest energy consumption, but also the most likely to cause a waste of resources, so the optimization of the grinding process is a very important link. The traditional fuzzy controller relies solely on the expert knowledge summary to construct control rules, which can cause significant steady-state errors in the model. In order to solve the above problem, this paper proposes an elastic variable universe fuzzy control based on Particle Swarm Optimization (PSO) algorithm. The elastic universe fuzzy control model does not need precise fuzzy rules, but only needs to input the general trend of the rules, and the division of the universe is performed by the contraction-expansion factor. The control performance is directly related to the contraction-expansion factor, so this article also proposes using particle swarm optimization to optimize the scaling factor to achieve the optimal value. Finally, simulation models of traditional fuzzy control and elastic universe fuzzy control of feeding system of mill were built using Python to verify the control effect. Its simulation results show that the time of the reaction of the fuzzy control system in the elastic variable theory universe based on particle swarm optimization was shorter by 34.48% comparing to the traditional one. Elastic variable universe fuzzy control based on particle swarm optimization (PSO) effectively improved the control accuracy of the mill feeding system and improved the response speed of the system to a certain extent.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3