Modeling and simulation of a gold concentrator plant implementing a dissolution loop method

Author:

Özdemir ErdemORCID,Dixon Richard,Saari Juha,Kasymova Diana,Tunc Berivan,Bilal Danish,Bayarmagnai Enkhzul,Lang Aleksandra,Koskenkorva Kaija,Larkomaa Jaakko

Abstract

Mineral processing applications increasingly use recycled water to preserve freshwater natural resources and comply with environmental regulations. However, accumulating anions, cations, and reagents in the process water may affect plant flotation performance and production continuity. Therefore, many cost actions may be needed to mitigate the recycled water effects. Typically, the process water properties and their effects on flotation performance are unknown for a greenfield project. Often, the result is an over-scaling up of the process plant with an additional financial cost. The experimental methodology in the paper focuses on creating water for testing that is closer to the actual process water during the comminution and flotation process for any greenfield project. The scope of the study consists of creating possible process water, conducting flotation experiments, and simulation. In order to validate the dissolution loop method, refractory gold flotation plant conditions were selected in our Finland laboratory. The simulation results of dissolution loop flotation kinetics were compared with the actual plant mass balance. According to the comparative results, the process water created by the dissolution loop method has the same physical and chemical properties as the actual process water at the site except for SO4 -concentration. Moreover, comparing the simulation results of the experimental data and plant mass balance studies shows that the gold grade and recovery results in the simulation were lower than the actual plant mass balance.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3