Effect of preoxidation on copper flotation from copper-lead mixed concentrate

Author:

Zeng Peng,Xie Haiyun,Jin Yanling,Zhang Pei,Chen Jialing,Liu Dianwen

Abstract

Flotation separation of galena and chalcopyrite is always a difficult problem in mineral processing. In this paper, the selective preoxidation of galena and chalcopyrite with sulfuric acid was developed, and then the two minerals were completely separated by flotation. The surface oxidation mechanism of galena and chalcopyrite with sulfuric acid was analyzed by Fourier transform infrared spectroscopy (FT-IR) and Atomic Force Microscopy (AFM), and the results showed that hydrophilic oxide film was formed on the galena surface, while the surface of chalcopyrite is still hydrophobic sulfide film, which led to the separation of the two minerals by flotation. In addition, the Response Surface Methodology (RSM) was used to analyze the influence of main preoxidation parameters on the flotation separation of copper-lead concentrate, and the parameters were further optimized, as follows: sulfuric acid concentration of 5.3 mol/L, oxidation temperature of 101.8 °C and time of 48.3 min. The mixed concentrate containing Cu 11.57% and Pb 16.75% was preoxidized under the above conditions, and the flotation separation verification results showed that Cu concentrate with Cu grade of 18.09% and recovery of 95.41%, and Pb concentrate with Pb grade of 44.96% and recovery of 95.94% was obtained respectively. This paper provides a new method of preoxidation combined flotation to achieve high-efficiency separation of copper-lead mixed concentrate.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3