The influence of activity coefficient and equilibrium constant models on the speciation of aqueous solutions of H<sub>2</sub>SO<sub>4</sub>–MgSO<sub>4</sub>–Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> at 235 and 250°C

Author:

Dickson Okechukwu VincentORCID,Deleau ThomasORCID,Coquelet ChristopheORCID,Espitalier FabienneORCID,Lombart Julien,Tardy Antoine

Abstract

Supersaturation occurs in many industrial applications promoting reactive crystallisation between the reactants to form solutes. These solutes accumulate during precipitation, leading to the formation of scales on the inner walls of the reactor and particularly around the stirrer, causing modifications in the hydrodynamics. This encrustation is responsible for process shutdowns in continuous crystallisation processes. Supersaturation control is essential for industrial processes aimed at controlling or inhibiting the formation of these solids. Knowledge of mineral solubility and chemical speciation is required to account for the composition of the complexes in the system in their various solid or aqueous forms. This speciation is obtained by considering the thermodynamic equilibrium constants of the dissociation/complexation reactions involved in the system, the pressure, and the activity coefficients of the chemical species in their molecular or electrolyte form. From these thermodynamic quantities and the state of the system, we can predict the direction of the reaction. This study highlights the risk of the lack of experimental information on equilibrium constants at high temperatures and moderate pressures. Our goal is to evaluate the accuracy of existing models classically used to predict the equilibrium constant in such very hard conditions encountered in hydrometallurgical processes. Furthermore, we demonstrate the influences of equilibrium constants estimation and activity coefficient models on the speciation of H<sub>2</sub>SO<sub>4</sub>–Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>–MgSO<sub>4</sub> systems, forming hydronium alunite and kieserite in the laterite liquor of hydrometallurgical processes

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3