The effect of liquid grinding aids on the dry fine grinding of muscovite

Author:

Bozkurt Volkan,Cayirli Serkan,Gokcen Serkan,Ucbas Yasar

Abstract

This paper investigates the production of a micronized muscovite to a target product size of d50~15 µm with a minimum energy consumption to suit the product requirements of the paint industry by a dry grinding process in a laboratory-scale vertical stirred ball mill. A series of batch dry grinding tests were conducted without and with two commonly used industrial liquid grinding aids, ethylene glycol (EG, C2H6O2) and triethanolamine (TEA, C6H15NO3). The results were evaluated based on particle size distribution (PSD), specific energy consumption, span value, and aspect ratio. The results showed that using liquid grinding aids resulted in a finer PSD, lower specific energy consumption, a narrower size distribution, lower span values, and a higher aspect ratio, which meant better delamination and improved grinding efficiency to that of no grinding aid. The interaction between grinding aids and ground muscovite surfaces was investigated by Fourier Transform Infrared Spectroscopy (FTIR). FTIR measurements revealed that EG and TEA were physically adsorbed on muscovite surfaces. Scanning Electron Microscopy (SEM) was also employed to determine differences between ground muscovite surfaces with and without grinding aids. SEM images indicated that grinding aids could prevent the agglomeration of ground muscovite particles while improving delamination. Adding grinding aids led to a decrease in muscovite agglomeration and an improvement in lamination owing to the adsorption of grinding aids on the particle surfaces.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3