The viscoelasticity, anisotropy and location-dependence of mechanical properties of rabbit iris investigated using uniaxial tensile tests

Author:

Tan Li ,Xiao Qin ,Zhicheng Liu ,Haixia Zhang ,Lin Li

Abstract

Purpose Abnormal iris mechanical properties have been considered to be an important cause of pupillary-block and angle-closure glaucoma. In this research, viscoelasticity, anisotropy and location-dependence of mechanical properties of rabbit iris were investigated using uniaxial tensile test. Methods Iris strips were taken along three directions: inner-circumferential direction (ICD), outer-circumferential direction (OCD) and radial direction (RD), respectively. Quasi-static tensile tests and stress-relaxation tests were applied on the iris strips. Then the stress-stretch data was fitted with third order Ogden model; the stress-relaxation data was fitted with the third order Prony series model. Through comparing the tangent modulus and relaxation limit of the strips from different directions and locations, the viscoelasticity, anisotropy and location-dependence of mechanical properties of rabbit iris were explored. Results The tangent moduli of iris at the stretch of 1.05 along ICD, OCD, and RD were 3.2 ± 1.4 kPa, 4.2 ± 2.6 kPa and 1.5 ± 0.8 kPa, respectively. Iris strips in ICD and OCD were found to have almost the same stress-relaxation behavior, and both relaxed slower than iris strips in RD. Conclusions The mechanical properties of the iris were nonlinear, viscoelastic, anisotropic and location-dependent. The stress growth rate of the circumferential direction iris strip is significantly lower than that of RD, and the stress relaxation rate is significantly higher than that of RD. That is, the iris is more prone to deformation in RD. This study can provide more precise iris material parameters for exploring the mechanical causes of pupillary-block.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3