Experimental research of energy absorbing structures within helmet samples made with the additive manufacturing method - preliminary study
-
Published:2023
Issue:1
Volume:25
Page:
-
ISSN:1509-409X
-
Container-title:Acta of Bioengineering and Biomechanics
-
language:en
-
Short-container-title:Acta Bioeng Biomech
Author:
Toboła Wojciech,Papis Mateusz,Jastrzębski Dominik,Perz_ Rafał
Abstract
Purpose
This study aims to develop an energy-absorbing structure for bicycle helmets to minimize head injuries caused by collisions. The research team explores three geometric structures produced through additive methods and compares their energy absorption properties with a standard bicycle helmet made of Expanded Polystyrene (EPS) foam.
Methods
The study prepared samples of three geometric structures (a ball, a honeycomb, and a conical shape) and a fragment of a bicycle helmet made of EPS foam with the same overall dimensions. Laboratory tests were conducted using a pneumatic hammer, piston compressor, anvil, triaxial accelerometer, and data processing systems. Three crash tests were performed for each type of structure, and the anvil's maximum acceleration and stopping distance after the crash were analyzed.
Results
The study found that the energy absorption properties of the Polylactic Acid (PLA) material printed with the incremental method were comparable or better than those of the EPS material used in helmets. The geometric structure of the energy-absorbing material played a crucial role in its effectiveness. The most promising results were obtained for the ball samples.
Conclusions
The study concluded that further research on energy-absorbing structures made using the Fused Deposition Modeling (FDM) method could be useful in the production of bicycle helmets. The results show that the geometric structure of the energy-absorbing material is a crucial factor in its effectiveness. The findings suggest that the ball-shaped structure made with PLA material printed using the incremental method could be a promising design for bicycle helmets to minimize head injuries caused by collisions.
Publisher
Politechnika Wroclawska Oficyna Wydawnicza
Subject
Biomedical Engineering,Biomaterials,Bioengineering,Biophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献