A refractive index sensor based on micro-nano fiber with chirped fiber Bragg grating embedded for a microfluidic chip

Author:

Zhanwu Xie ,Haitao Yan ,Pengfei Li

Abstract

A refractive index (RI) sensor based on micro-nano fiber (MN-fiber) with chirped fiber Bragg grating (CFBG) Fabry–Perot cavity (FP-cavity) for a microfluidic chip has been proposed. A single-mode fiber is drawn by hydrogen flame heading come into MN-fiber. Two CFBGs are written into this MN-fiber by the ultraviolet (UV) laser mask exposure method. One is at the tapered region, another is at the micro-nano region. Then a micro-nano fiber with chirped fiber Bragg grating (MN-CFBGs) FP-cavity sensor is formed. The Bragg reflection wavelengths of two CFBGs are 1620 nm, 3-dB bandwidth are above 50 nm. The reflectance of two CFBGs are 70% and 99%, respectively. The effects of reflectivity and bandwidth of the CFBGs FP-cavity, diameter and length of MN-fiber with this sensor’s optical properties are analysed is and discussed. This sensor is embedded in a microfluidic chip and the MN-fiber region is immersion microfluid in different channels. The experimental results show that refractive index sensitivity of the sensor is –986 nm/refractive index unit (RIU), and the signal of the sensor has little noise. The CFBG-FP sensor not only has high sensitivity and lager measurement range, but also high contrast resonance signal and stability.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3