Coal slurry foam image enhancement based on multiscale convolutional network

Author:

Huang XianWuORCID,Wang YuxiaoORCID,Zhu ZhiHong,Shang Haili,Cao Zhao

Abstract

Collecting information on the flotation foam characteristics is important for controlling flotation production conditions. Foam images acquired during coal slurry flotation are affected by factors such as ambient lighting, contributing to uneven grayscale images with low brightness and contrast. Brightness enhancement of foam images is often required when using network models to extract feature information from the images. The paper proposes a foam image brightness enhancement algorithm based on a multiscale convolutional neural network. The method employs a skip connection structure based on a summation connection design based on logarithmic functions and introduces a loss function based on logarithmic transformation in the network. At the same time, branching networks of different complexity are designed in the network to further help alleviate the gradient vanishing problem. The experimental results show that when evaluating the quality of images after brightness enhancement of foam images and the public dataset MIT, the numerical results of using the proposed skip connection structure in the proposed network are overall better than using the resblock structure, and the proposed loss function is better than is better than using the L2 loss function. The proposed network greatly improves the visual effect of flotation foam images and lays the foundation for feature extraction of flotation foam images and intelligent flotation production.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3