Current status of research on nanobubbles in particle flotation

Author:

Chen Jian,Chen Jun,Cheng Yali

Abstract

Froth flotation, as one of the most widely used separation approaches in mineral processing, is commonly used to recover valuable components from minerals. However, maintaining high flotation efficiencies is a serious challenge for conventional froth flotation in the face of decreasing particle size of the minerals to be sorted. To date, there have been plenty of reports on the software of nano-bubbles (NBS) in flotation, and the experimental consequences show that nano-bubbles' introduction has given rise to improvement's different grades in the recovery of varieties of minerals, which highlights the great potential of nano-bubbles for mineral flotation. Nanobubbles have smaller bubble radii and unusually high stability compared to conventional flotation bubbles, and their related behavior in flotation has been a hot research topic. This paper reviews some of the methods of preparing nanobubbles, equipment techniques for characterizing nanobubbles, factors affecting their stability, and some of the popular doctrines. In particular, the reinforcing mechanism of nanobubbles in the particle flotation process is discussed, first, the nanobubbles improve the electrostatic attractiveness with the particles by achieving the charge inversion while the nanobubbles that was adsorbed on the particles' surface will cover a share of the charge, which decreases the electrostatic repulsive force between the particles; and second, the nanobubbles can act as a bridge between the surfaces of the two particles, which advances the agglomeration between the particles. This review aims to be able to further advance the research related to the industrialization of nanobubbles.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3