Detachment and flow behaviour of anode slimes in high nickel copper electrorefining

Author:

Sahlman Mika,Aromaa Jari,Lundström Mari

Abstract

Most of the world’s copper is produced via copper electrorefining, where nickel is the most abundant impurity in the process. Previously it has been suggested that nickel affects the adhesion of anode slimes on the anode as well as the porosity of the slime layer that forms. This paper investigates the effects of nickel, oxygen, sulphuric acid and temperature on the detachment of anode slimes from the anode surface. The detachment of particles as a function of both anode and electrolyte composition was studied on laboratory scale using a camera connected to a Raspberry Pi, and particle detection and movement analysed using TrackPy. The results revealed four different slime detachment mechanisms: cloud formation, individual particle detachment, cluster detachment and avalanche. These were found to be dependent on the electrolyte (0, 10, 20, 30 g/dm3 Ni2+ & 100, 200 g/dm3 H2SO4), with increasing nickel concentration promoting cluster detachment and increasing sulphuric acid concentration favouring detachment of individual particles. Anode composition (0.05-0.44 wt% O and 0.07-0.64 wt% Ni) was shown to affect the flow direction of anode slimes, with increasing nickel leading to more upward-flowing slimes. Typical particle movement velocities were from -0.5 to 1.0 mm/s regardless of the electrolyte and anode composition, and regardless of the operating temperature (25 °C & 60 °C) for small particles (<0.5 mm). The results also support previous findings that increasing the nickel concentration of the electrolyte leads to a more porous anode slime layer on the anode.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3