Effects of Ca<sup>2+</sup>/Mg<sup>2+</sup> ions in recycled water on the reverse flotation properties of iron oxides

Author:

Tang Min,Wu Yan,Fu Jiahao

Abstract

Water quality, particularly hardness, plays an important role in affecting the floatability of minerals as it interferes with the chemical/electro-chemical characteristics of mineral surfaces and their interactions with flotation reagents. It could become unpredictable when water sources characterized by different calcium or magnesium ion distributions were involved. This study aimed to identify the role of Ca<sup>2+</sup>/Mg<sup>2+</sup> ions in the recycled water on the cationic reverse flotation selectivity of iron oxides through a series of bench/micro flotation tests, zeta potential, powder contact angle, and Fourier Transform Infrared (FTIR), etc. The results pointed out that the use of recycled tailing water deteriorates the flotation selectivity and dilutes the concentrates. This can be largely attributed to the presence of Ca<sup>2+</sup> ions at higher concentrations as they induce a drop in the Fe recovery and an increase in SiO2 content while an increase in the content of Mg<sup>2+</sup> ions seems to have little effect on the quality of concentrate. As evidenced by the data from micro-flotation, powder contact angle, zeta potentials, and FTIR, a hydrophilic colloidal layer formed by Ca-based hydrolyzed compounds, such as Ca(OH)<sup>+</sup> or, CaCO<sub>3(s)</sub>, etc., on quartz could change its zeta potentials and disturb its interactions with a cationic collector. They also play a role in weakening the flocculation of starch on hematite probably by pre-locking the acidic groups on the starch remnants and contracting their configurations, thus preventing their adsorption on mineral surfaces. However, magnesium ions seem to be beneficial to in strengthening the flocculation of starch on hematite as magnesium-based species could act as adsorption bridges of between starch and mineral surfaces.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3