Semi-quantitative analysis study of the impact of microwave treatment on fly ash

Author:

Ma xianyun,Nie Yimiao,Guo Jiale,Chen Yang,Chang Zhenjia,Wang Ling,Liu Shuxian,Wang Long

Abstract

Pre-processing provides an effective way for fly ash's high value-added utilization. However, the shortcomings of pre-processing methods such as grinding and flotation are apparent, with many disadvantages that make it more challenging to use efficiently. Microwave heating helps the SiO2-Al2O3 bond break, not only can make the structural change of the material can also promote the chemical reaction process. In the article, XRD, SEM, FT-TR, ammonia nitrogen adsorption, and other methods were used to analyze the changes in the properties of fly ash before and after microwave pre-treatment, the change of adsorption performance of fly ash before and after microwave treatment was analyzed. The study found that under microwave conditions of 600W and 15min, the adsorption rate of ammonia nitrogen by fly ash reached the maximum of 29.67%. The intensity of mullite and amorphous diffraction peaks decreased after 20 minutes at 600W. The Si-O-(Si, Al) and Si-O-(Si) bonds showed significant changes at 15 and 20 minutes under 600W conditions. Based on the results, microwave conditions were selected at 600W for different periods, and semi-quantitative analysis was carried out by XRD-Rietveld, infrared peak fitting, and nuclear magnetic resonance. The XRD-Rietveld analysis showed that the amorphous phase content reached 46.18% at 15 minutes. In the infrared peak fitting, the fitting area at 1300-900cm-1 and 600-400cm-1 peaks reaches 56.92% at 25 minutes and 17.5% at 15 minutes, respectively. The silicon-oxygen network's degree of connection and polymerization is reduced after 15 minutes of microwave treatment for the nuclear magnetic resonance analysis.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3