Synergistic mechanism of dodecylamine/octanol mixtures enhancing lepidolite flotation from the self-aggregation behaviors at the air/liquid interface

Author:

Bai Yang,Xu Mengxu,Wen Weixiang,Zhu Shifei,Mo Weichen,Yan Pingke

Abstract

Surface tension measurements and molecular dynamics (MD) simulations were used to explore the flotation foam properties and self-aggregation behaviors of dodecylamine (DDA)/octanol (OCT) mixtures formed with different mole ratios at the air/liquid interface. Based on the surface and thermodynamic parameters, the DDA/OCT mixtures exhibited greater interfacial activities and adsorption capacities than their individual components. The MD simulations showed that DDA and OCT were aggregated through hydrogen bonding, coulombic forces and hydrophobic association. OCT was inserted into the DDA adsorption layer, causing the alkyl chains of both DDA and OCT to extend from water to air at varying heights and angles. The addition of OCT improved the hydration of the amino groups and reduced the overall number of hydrogen bonds. The stability of the flotation foam decreased, and the high viscosity and difficult defoaming of the DDA flotation foam were significantly improved. When the DDA/OCT mole ratio was 2:1, the included angle formed between the alkyl chains and the interface was maximized, leading to enhanced compatibility among the alkyl chains, and the hydrogen bond energy was relatively large, which showed a strong synergistic effect. The MD simulation findings were consistent with the results obtained from the lepidolite flotation and surface tension experiments conducted in this study; our results could provide a theoretical foundation for the selection of superior mixed collectors and frothers.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3