Grindability characterization and work index determination of alluvial ferro-columbite deposits for efficient mineral processing

Author:

Nzeh Nnaemeka Stanislaus,Adeleke Abraham A.,Popoola Patricia Abimbola

Abstract

This study emphasizes on the physicochemical and grindability characteristics and work index of an alluvial formed silica dominated ferro-columbite mineral from Rayfield-Jos minefields in Plateau state, Nigeria. Investigations were also carried out in order to determine the mineralogy of the mineral deposits and most essentially the actual energy consumed during comminution and milling of the mineral so as to achieve the liberation size prior to high efficient mineral processing or beneficiation and the extraction of value metals. The distribution of the mineral particles as well as their sizes was determined, with a mineral liberation size fraction range essentially established as -150+90 µm particle sizes. Mass percentage of each size fraction obtained from PSD analysis conducted before and after comminution was also determined, obtaining 80% passing for both the mineral feeds and comminuted products. Berry and Bruce modified Bond’s work index was therefore obtained, and was determined to be within the range of 2.0414 to 2.5667 kWh/ton. Hence, the energy consumed or required to comminute or grind the Fe-columbite mineral to 80% passing is expected to fall within the range of 0.3613 to 0.4543 kWh. Thus, it could be said that a low milling work index as well as moderately low energy is required for comminution and this can be attributed to the mineralogy, mineral source and alluvial formation of the mineral reserve. Therefore, the grindability/PSD result of the mineral sample indicates that its mineralogy is considered a class of moderately soft mineral type in terms of texture with easy grindability.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3