Insights into the depression effect and adsorption mechanism of HACC on chalcopyrite surface in Cu-Mo flotation separation

Author:

Li Mingyang,Zhang Pengpeng,Gao Xiangpeng,Huang Lingyun

Abstract

In this study, hydroxypropyltrimethyl ammonium chloride chitosan (HACC) was first introduced as a depressant during separating chalcopyrite from molybdenite (Cu-Mo). The selective effects of HACC on the separation of Cu-Mo were conducted by single-mineral flotation tests. The findings revealed that HACC helps separate Cu and Mo efficiently at pH 6 with 8 mg/L of HACC, resulting in 76.22% and 5.38% of Mo and Cu recovery, respectively. The adsorption mechanism of HACC was investigated via Zeta potential, adsorption density, contact angle, FT-IR and XPS analysis. The contact angle and adsorption density measurements offer indisputable proof that HACC can adsorb on the surface of chalcopyrite. Furthermore, FT-IR and XPS measurements confirm that N atoms in quaternary ammonium groups of HACC interact with Cu sites on the surface of chalcopyrite. The findings also suggest that HACC adsorbs on the surface without significantly impacting molybdenite. All these results confirm that HACC can be an effective chalcopyrite depressant.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3