Kinematics and workspace analysis of a robotic device for performing rehabilitation therapy of upper limb in stroke-affected patients

Author:

Valayil Tony Punnoose,Augustine Rose Shaji

Abstract

Purpose: Exoskeleton robots generally have multi-functions and one such function is doing rehabilitation therapy in upper limb and lower limb in stroke-affected patients. A novel hybrid (serial-parallel) robot manipulator was proposed in this paper for rehabilitation of upper limb and its kinematics are studied systematically. This robot manipulator intends to perform wrist flexion, wrist extension, wrist radial deviation, wrist ulnar deviation, elbow flexion, elbow extension, elbow pronation and elbow supination motions. The contemporary mechanical designs especially the kinematic structure of upper limb exoskeleton robots have a unique feature that is, almost all of them use serial manipulators, and few others used parallel manipulators. The kinematic structure of the proposed robot is that of a hybrid manipulator (two parallel manipulators connected in series) which has 4-degrees-of-freedom. It is composed of an upper 3SPS-type parallel manipulator and 2SPR-type parallel manipulator connected in series. Methods: The Jacobian and Hessian Matrix method was used to derive the manipulator kinematic formula for solving the displacement, velocity and acceleration. Results: A 3D model of the robotic arm was constructed and analyzed by simulation. The positioning workspace of manipulator was constructed and analyzed. Conclusions: The 3SPS-type parallel manipulator has good kinematic characteristics while performing wrist motions. The 2SPR-type parallel manipulator produced singular configuration, while performing the desired rehabilitation elbow motions, it was found to not be suitable for usage in performing rehabilitation therapy in stroke-affected patients.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3