Selected aspects of the application of the hybrid circulatory system in the analysis of heart insufficiency
-
Published:2022
Issue:2
Volume:24
Page:
-
ISSN:1509-409X
-
Container-title:Acta of Bioengineering and Biomechanics
-
language:en
-
Short-container-title:Acta Bioeng Biomech
Author:
Milewski Grzegorz,Rumian Stanisław,Kopacz Michał,Ciszkiewicz Adam
Abstract
Purpose: There are many causes of heart failure, one of them being valvular heart disease. In this case, the stage and type of the disease can significantly affect the hemodynamic parameters of the left ventricle of the heart. In turn, these parameters can significantly influence the mode, type and strategy of clinical treatment. The aim of the study was to analyze and map the hydrodynamic conditions of the heart using a hybrid-digital model of the circulatory system. Methods: The tests performed using the circulatory system model allowed for the simulation of the failure of both heart’s left ventricle and a set of arteries in the systemic circulation. Furthermore, the changes in hemodynamic parameters for valvular anomalies at various heartbeats were obtained. Results: The results suggested that a higher heartbeat should be sustained in such cases of complex mitral-aortic anomalies in the clinical practice. When observing low aortic pressures, heartbeat should be increased to compensate for the valvular insufficiencies. Conclusions: Extending the already conducted research could result in constituting a wide database for clinicians who are treating the insufficiency of the left ventricle of the heart. Moreover, the information included in this paper may be used for a comparison of the clinical anomalies, which facilitates a correct diagnosis. The test-stand used in the research can be applied to predict the anomalies of the circulation system for a quick and precise analysis of a clinical anomaly of a patient without physical presence.
Publisher
Politechnika Wroclawska Oficyna Wydawnicza
Subject
Biomedical Engineering,Biomaterials,Bioengineering,Biophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献