Electrical performance analysis and optimization of monofacial and bifacial crystalline silicon solar cells

Author:

Manikandan A.V.M.,Prince Shanthi

Abstract

This paper presents the investigations and performance analysis of monofacial and bifacial crystalline silicon solar cells with PC1D simulation software. The fundamental limitation in the monofacial solar cell’s performance is its inability to absorb all the incoming solar radiation since the albedo effect (ground-reflected light that can be captured by the rear of the solar cell) is often neglected. So, the efficiency of the monofacial cell will be lower due to poor and incomplete optical absorption. Bifaciality helps to enhance the capturing of light in the solar cell, which means that the rear of the cell is exposed to solar radiation to produce electrical power. The primary focus of our work is to determine which solar cell offers better device performance and conversion efficiency by analyzing various parameters of the solar cell like surface texturing, emitter doping, bulk doping, minority carrier lifetime, bulk and surface recombination rates, front and rear reflectance, among other parameters. The other parameters are maintained at an optimal range to achieve the highest conversion efficiency. Our work has shown that the bifacial solar cell can be as efficient as 28.15%, which is much better than the 22.65% efficiency of the monofacial solar cell.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3