Inhibition of nitrovasodilator- and acetylcholine-induced relaxation and cyclic GMP accumulation by the cytochrome P-450 substrate, 7-ethoxyresorufin

Author:

Bennett Brian M.,McDonald Bernard J.,Nigam Rita,Long Patrick G.,Simon W. Craig

Abstract

We examined the effect of the cytochrome P-450 substrate, 7-ethoxyresorufin (7-ER), and its corresponding product, resorufin, on nitrovasodilator- and endothelium-dependent relaxation of isolated rat aorta. The EC50 value for glyceryl trinitrate (GTN) induced relaxation was increased over 100-fold by 7-ER and less than 3-fold by resorufin. The EC50 value for sodium nitroprusside (SNP) induced relaxation was increased approximately 12-fold by 7-ER, acetylcholine (ACh) induced relaxation was abolished, and relaxation induced by isopropylnorepinephrine was not significantly affected. GTN-, SNP-, and ACh-induced increases in cyclic GMP accumulation were inhibited by 7-ER, as were basal cyclic GMP levels in endothelium-intact, but not endothelium-denuded tissues. 7-ER decreased GTN biotransformation in intact aorta and decreased the regioselective formation of glyceryl-1,2-dinitrate. The activation by GTN and SNP of aortic guanylyl cyclase in broken cell preparations was not affected by 7-ER, indicating that the inhibitory effect of 7-ER is probably not due to a direct interaction with guanylyl cyclase. The inhibitory effect of 7-ER on GTN-induced relaxation was not altered by the addition of superoxide dismutase, suggesting that 7-ER does not act by increasing superoxide anion concentration (which would serve to increase the degradation of nitric oxide (NO) formed during vascular GTN biotransformation). Our data provide further evidence for the role of the cytochrome P-450 – cytochrome P-450 reductase system in the biotransformation of GTN to an activator (presumably nitric oxide) of guanylyl cyclase. The data are consistent with a mode of action of 7-ER involving either competitive inhibition of vascular cytochrome P-450 or uncoupling of vascular cytochrome P-450 reductase from cytochrome P-450. The data also suggest that the cytochrome P-450 system facilitates NO release from SNP and that 7-ER has an inhibitory effect on endothelial nitric oxide synthase.Key words: glyceryl trinitrate, nitrovasodilators, cytochrome P-450, vascular smooth muscle, 7-ethoxyresorufin, endothelium, cyclic GMP.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3