Author:
Bennett Brian M.,McDonald Bernard J.,Nigam Rita,Long Patrick G.,Simon W. Craig
Abstract
We examined the effect of the cytochrome P-450 substrate, 7-ethoxyresorufin (7-ER), and its corresponding product, resorufin, on nitrovasodilator- and endothelium-dependent relaxation of isolated rat aorta. The EC50 value for glyceryl trinitrate (GTN) induced relaxation was increased over 100-fold by 7-ER and less than 3-fold by resorufin. The EC50 value for sodium nitroprusside (SNP) induced relaxation was increased approximately 12-fold by 7-ER, acetylcholine (ACh) induced relaxation was abolished, and relaxation induced by isopropylnorepinephrine was not significantly affected. GTN-, SNP-, and ACh-induced increases in cyclic GMP accumulation were inhibited by 7-ER, as were basal cyclic GMP levels in endothelium-intact, but not endothelium-denuded tissues. 7-ER decreased GTN biotransformation in intact aorta and decreased the regioselective formation of glyceryl-1,2-dinitrate. The activation by GTN and SNP of aortic guanylyl cyclase in broken cell preparations was not affected by 7-ER, indicating that the inhibitory effect of 7-ER is probably not due to a direct interaction with guanylyl cyclase. The inhibitory effect of 7-ER on GTN-induced relaxation was not altered by the addition of superoxide dismutase, suggesting that 7-ER does not act by increasing superoxide anion concentration (which would serve to increase the degradation of nitric oxide (NO) formed during vascular GTN biotransformation). Our data provide further evidence for the role of the cytochrome P-450 – cytochrome P-450 reductase system in the biotransformation of GTN to an activator (presumably nitric oxide) of guanylyl cyclase. The data are consistent with a mode of action of 7-ER involving either competitive inhibition of vascular cytochrome P-450 or uncoupling of vascular cytochrome P-450 reductase from cytochrome P-450. The data also suggest that the cytochrome P-450 system facilitates NO release from SNP and that 7-ER has an inhibitory effect on endothelial nitric oxide synthase.Key words: glyceryl trinitrate, nitrovasodilators, cytochrome P-450, vascular smooth muscle, 7-ethoxyresorufin, endothelium, cyclic GMP.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献