Application of portable free-fall penetrometer for geotechnical investigation of Arctic nearshore zone

Author:

Stark Nina1,Radosavljevic Boris23,Quinn Brandon1,Lantuit Hugues23

Affiliation:

1. Virginia Tech, Department of Civil and Environmental Engineering, 200 Patton Hall, Blacksburg, VA 24060, USA.

2. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Research Unit Potsdam, Potsdam, Germany.

3. Institute of Earth and Environmental Science, University of Potsdam, Potsdam, Germany.

Abstract

The Arctic is currently undergoing rapid changes with regard to sea ice extent permafrost thaw, and coastal erosion. In addition to hydrodynamic processes, the sediments in the Arctic nearshore zone are affected by freeze–thaw cycles, as well as an increase of abundant suspended sediment introduced by permafrost-induced mass movements, such as retrogressive thaw slumps, and increased river discharge. During the YUKON14 expedition to Herschel Island, Yukon, in situ geotechnical testing of nearshore zone sediments was conducted using a portable free-fall penetrometer. Approximately 200 sites were tested, and four different geotechnical signatures identified and grouped. Most locations were characterized by a soft sediment top layer that exhibited a noticeably lower sediment strength than the underlying sediment. In some cases, multiple layers of different sediment strength were detected in the upper meter of the seabed surface. The results were correlated to existing sediment grain size records and backscatter information from a phase measuring bathymetric sonar. Strong spatial variations in sediment type and stiffness were observed, as well as in abundance and thickness of a top layer of very soft and loose sediment. The geotechnical signatures were correlated to site-specific hydrodynamic conditions, morphology, and vicinity to thaw slumps.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3