Offshore pipelines and ice gouge geohazards: comparative performance assessment of decoupled structural and coupled continuum models

Author:

Pike Kenton1,Kenny Shawn2

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada.

2. Department of Civil and Environmental Engineering, Faculty of Engineering and Design, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.

Abstract

Offshore pipelines in ice environments may be subjected to unique geohazards such as seabed ice gouging. These events involve nonlinear processes including large deformations and strains, contact mechanics, and failure mechanisms. Current pipeline engineering design practice employs decoupled, structural finite element modelling procedures to assess system demand and capacity. The inherent error and uncertainty within this approach drives conservative engineered solutions. Physical modelling and continuum numerical simulation tools complement this engineering framework to improve confidence in predicted outcomes. The relative performance of engineering models, used in current practice, and numerical simulation tools, including structural and continuum finite element modelling procedures, to predict the deformation and strain response of a buried pipeline subjected to an ice gouge event is examined. Refinements to the numerical modeling procedures and establishment of a consistent and compatible reference framework for the performance evaluation differentiate this study from others, which are subsets of the current investigation. For the parameter analysis conducted, within an equivalent reference framework, the outcomes demonstrate key factors, including superposition error and directional load decoupling, that influence model error that may not be as significant as previously considered. The scope and extent of this outcome is not fully understood and requires further investigations to delineate the significance across a wider parameter range.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference38 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3