Field measurements of water storage capacity in a loess–gravel capillary barrier cover using rainfall simulation tests

Author:

Zhan Liang-tong1,Li Guang-yao11,Jiao Wei-guo11,Wu Tao11,Lan Ji-wu11,Chen Yun-min11

Affiliation:

1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China.

Abstract

A 30 m long × 20 m wide capillary barrier cover (CBC) test site was constructed at the Jiangcungou landfill in Xi’an, China. The cover consisted of a compacted loess layer with a thickness of 0.9 m underlain by a gravel layer. After the cover surface was kept bare and exposed to natural climate conditions for nearly 5 months, one artificial rainfall event was implemented at the site. Vegetation was established at the test site after the first rainfall event. Four months later, a second artificial rainfall event was applied to the surface of the vegetated site. The pore-water pressures (PWPs) and volumetric water contents (VWCs) of the cover were monitored using jet-filled tensiometers and time-domain reflectometry moisture probes, respectively. Surface runoff and percolation were measured using field collection devices. The field measurements demonstrated a more rapid response of PWPs to the rainfall compared to the response of the VWCs. Percolation was observed when the PWPs near the interface reached the water-entry value of the gravel at local points. At that moment, the measured VWC near the interface was less than the VWC according to the water-entry value. The observation indicated that preferential flows took place in the compacted loess during the rainfall. As a result, the maximum water storage capacity was not reached at the onset of percolation. When percolation ceased, the average PWP near the interface decreased below the water-entry value, while the VWC near the interface was higher than that at the onset of percolation. Water storage at the completion of percolation was approximately 5% greater than that at the onset of percolation. Compared with the monolithic loess cover, the loess–gravel CBC increased the available water storage capacity by 41% at the completion of percolation. Vegetation had an insignificant influence on water storage capacity.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3