Laboratory characterization and discrete element modeling of shrinkage and cracking in clay layer

Author:

Guo Yuan11,Han Chanjuan11,Yu Xiong (Bill)11

Affiliation:

1. Department of Civil Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, OH, USA.

Abstract

The performance of a variety of geostructures, such as compacted clay liners, earth dams, and pavement embankments, is compromised by soil cracking. Experiments are set up to monitor the drying process of a clay layer under controlled temperature and humidity conditions. The gravimetric water content and images are captured automatically. Volumetric shrinkage of the bentonite sample as well as the crack patterns are determined from images. The monitored volumetric strain development is used to implement the discrete element method (DEM) to simulate the drying shrinkage and desiccation cracking. Model parameters are calibrated through unconfined compression tests on clay specimens at different water contents. This simplified calibration procedure allows characterization of the soil behaviors in the mesoscale and bypass the complex physicochemical processes involved. The initiation and propagation of cracks from the DEM model agree well with the phenomena observed in the laboratory experiments. The influence of boundary constraint and sample thickness on the crack patterns is analyzed, which includes the use of hydrophobic coating to diminish the boundary constraint. Major features of desiccation cracking can be replicated with the computational procedures. Boundary constraint, including surface roughness and strength of boundary layer, is found to significantly influence the final crack patterns.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference43 articles.

1. Effect of Desiccation on Compacted Natural Clays

2. Numerical modelling of desiccation cracking

3. Numerical modelling of desiccation cracking in a restrained ring test

4. Role of Microscopic Physicochemical Forces in Large Volumetric Strains for Clay Sediments

5. ASTM. 2000. D4318-00. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International, West Conshohocken, Pa. 10.1520/D4318-00.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3