Effective use of geosynthetics to increase bearing capacity of shallow foundations

Author:

Shahin Hossain Md.1,Nakai Teruo2,Morikawa Yukihiro3,Masuda Saki4,Mio Susumu5

Affiliation:

1. Islamic University of Technology, Board Bazar, Gazipur, Bangladesh; formerly Nagoya Institute of Technology, Japan.

2. Geo-Research Institute; Nagoya Institute of Technology, Nagoya, Japan.

3. Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Japan.

4. NTT West; formerly Nagoya Institute of Technology, Nagoya, Japan.

5. Nikken Wood Systems, Tokyo, Japan.

Abstract

In this research, a reinforcement mechanism for shallow foundations is determined through laboratory model tests and numerical analyses. The numerical analyses are performed with the finite element program FEMtij-2D using the elastoplastic subloading tij model. The frictional behavior between the reinforcement and the ground is simulated using an elastoplastic joint element. Several tests were performed whereby the installation depth, length, roughness, and fixity conditions at the edges of the reinforcement were varied. Results show that the effectiveness of the reinforcement and the bearing capacity of the reinforced ground depend on the position, length, roughness, and fixity condition of the reinforcement. A significant increase in the bearing capacity can be achieved if the geosynthetics are properly placed at an optimum length with the boundary fixed to the ground. The effect of the loading position is also investigated because in reality the load on a foundation does not always act at the center of the foundation. The numerical results accurately describe the experimental results; the simulations accurately account for the mechanical behaviors of both the soil and reinforcement and the frictional behavior between them. Therefore, the simulation technique can be used to predict the bearing capacity of reinforced ground.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3