Effects of various soil fungi and insecticides on the capacity of Mucor alternans to degrade DDT

Author:

Anderson J. P. E.,Lichtenstein E. P.

Abstract

Pure cultures of the fungus Mucor alternans, isolated from DDT-contaminated soils, were able to degrade DDT to water-soluble metabolites. After the addition of fungal spores to DDT-contaminated soils, however, the insecticide-degrading capacity of the fungus was no longer evident. Since under field conditions many species of fungi are simultaneously exposed to mixed residues of pesticidal chemicals, the effects of various species of soil fungi and of various insecticides on DDT degradation by M. alternans were investigated. Experiments were conducted to study the effect of nine fungal species, their stale cell-free media, and various insecticides and related compounds on the capacity of M. alternans to degrade 14C-DDT to water-soluble metabolites. It was found that several pure fungal cultures or some cell-free media, in which mycelia had grown, could also degrade the insecticide. In most cases, however, addition of one of the various fungi to 14C-DDT-treated M. alternans cultures resulted in a total depression of the appearance of water-soluble metabolites in the media. This was due to an accumulation of the metabolites in the mycelium of the other fungus or in an inhibition of metabolite formation. Addition of stale media from various fungi to 14C-DDT-treated M. alternans cultures had various effects on fungal growth and on the capacity of the fungus to degrade the insecticide. Among the insecticides and related compounds tested only lindane, parathion, and Dyfonate caused a reduction in DDT degradation by M. alternans, without severely reducing its vegetative growth.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3