Abstract
Gamma rays in the MeV region were observed from balloons at λ = 26 °N on September 29, 1966. A scintillation counter constructed with two NaI ⅓ in. × 2 in. [Formula: see text] crystals separated by 1 cm × 2 in. [Formula: see text] lead was used to measure the directional distribution of the gamma-ray flux. This counter was flown at an atmospheric depth of 14.2 g cm−2. As the response of each crystal of this counter depends on the direction of incidence of the gamma rays, an anisotropic distribution of gamma rays gives rise to a difference between the counting rates of two crystals. It was ascertained from the observation that albedo gamma rays from the lower atmosphere are predominant at this high altitude. The deviation from the calculated values of the difference in counting rate assuming only atmospheric gamma rays may be due to an extraterrestrial origin of part of the gamma-ray flux. For the measurement of the gamma-ray spectrum, a phoswich counter (1 in. × 1 in. [Formula: see text] NaI crystal surrounded by ¼-in.-thick plastic scintillator) was flown to 10 g cm−2. Though the main part of the gamma-ray flux is probably due to atmospheric gamma rays, an upper limit for the isotropic cosmic gamma-ray flux is deduced to be (1.25 ± 0.05) × 10−2 counts cm−2 s−1 sr−1 MeV−1 in the energy range 1.2–3.1 MeV.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献