Kinetic and mechanistic studies of the reactions of diarylgermylenes and tetraaryldigermenes with carbon tetrachloride

Author:

Huck Lawrence A.1,Leigh William J.1

Affiliation:

1. Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton ON L8S 4M1, Canada.

Abstract

The mechanisms of the reactions of diphenylgermylene (GePh2) with CCl4 in hydrocarbon solvents and in THF solution have been studied, employing 3,4-dimethyl-1,1-diphenylgermacyclopent-3-ene (6a) and 1,1-diphenylgermacyclobutane (17) as photochemical precursors to GePh2. In hydrocarbon solvents, the reaction produces Ph2GeCl2 (10) and Ph2Ge(Cl)CCl3 (12) in a ratio of 10:12 ≈ 7, along with a variety of other radical-derived products and small amounts of Ph2GeH(D)Cl (11), which is formed partly by reaction of GePh2 with adventitious HCl. The reaction is much cleaner in THF, where 12 is formed as the major product (10:12 ≈ 0.8); a similar product distribution is obtained in hexanes containing 0.05 mol/L THF, while 12 is the exclusive product in hexanes containing 3 mmol/L NEt3. Rate constants for the reactions of CCl4 with GePh2 and five ring-substituted derivatives were determined by laser flash photolysis, as well as Arrhenius parameters for reaction of the parent (GePh2), in the two solvents. The reactions of GePh2 with CCl4 and CHCl3 have also been studied in 3-methylpentane solution at 78–90 K. Different reaction mechanisms are clearly operative in hydrocarbon and complexing solvents, but both involve modest charge donation from germanium to the substrate in the transition state for the rate-determining step. For the reaction in hydrocarbon solvents, the data are consistent with inner-sphere electron transfer following or in concert with weak Lewis acid–base complexation. A similar mechanism is proposed for the reaction in THF solution, in competition with a second involving nucleophilic attack of the germylene–THF complex at a chlorine atom of the substrate. Rate constants were also determined for reaction of CCl4 with the corresponding tetraaryldigermenes at low halocarbon concentrations in hexanes, along with Arrhenius parameters for the parent (Ge2Ph4). These reactions also proceed via initial Cl-atom abstraction, based on the identity of the products formed in the reaction of CCl4 with tetramesityldigermene.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Organogermanium Photochemistry;Organogermanium Compounds;2023-03-15

2. Organogermanium Compounds of the Main Group Elements;Organogermanium Compounds;2023-03-15

3. Oligo‐ and Polygermanes;Organogermanium Compounds;2023-03-15

4. Selective Chlorination of Germanium Hydrides;Zeitschrift für anorganische und allgemeine Chemie;2020-11-12

5. Photodecompostion of the Oligogermanes nBu3GeGePh2GenBu3 and nBu3GeGePh3: Identification of the Photoproducts by Spectroscopic and Spectrometric Methods;European Journal of Inorganic Chemistry;2016-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3