Reply to "A remark on Moore's new method of obtaining approximate solutions of the Dirac equation"

Author:

Moore R. A.,Lee Sam

Abstract

This work was written to clarify the use of a recently developed procedure to obtain approximate solutions of the one-particle Dirac equation directly and in response to a recent critique on its application to lowest order. The critique emphasized the fact that when the wave functions are determined only to zero order then a first order energy calculation contains significant errors of the order of α4, α being the fine structure constant, and a matrix element calculation error of order α2. Tomishima re-affirms that higher order solutions are required to obtain accuracy of these orders. In this work the hierarchy of equations occurring in the procedure is extended to first order and it is shown that exact solutions exist for hydrogen-like atoms. It is also shown that the energy in second order contains all of the contributions of order α4. In addition, we illustrate, in detail, that the procedure can be aplied in such a way as to isolate the individual components of the wave functions and energies as power series of α2. This analysis lays the basis for the determination of suitable numerical methods and hence for application to physical systems.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perturbative solutions of quantum mechanical problems by symbolic computation;Journal of Computational Physics;1990-04

2. Perturbation theory of relativistic corrections;Zeitschrift f�r Physik D Atoms, Molecules and Clusters;1990-03

3. Perturbation theory of relativistic corrections;Zeitschrift f�r Physik D Atoms, Molecules and Clusters;1989-03

4. Relativistic calculations of molecules relativity and bond lengths;Physica Scripta;1987-09-01

5. Relativistic perturbation theory. third order variational perturbation calculations for H2+;Physica Scripta;1987-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3