Affiliation:
1. Laboratoire de Chimie Quantique, Institut de Chimie, UMR 7177 CNRS/ULP, Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France.
2. Departamento de Química Inorgánica, Facultad de Ciencias. Universidad de Granada, Campus de Fuentenueva, 18071 Granada, Spain.
Abstract
DFT-B3LYP calculations have been carried out to assess the fate of the Pd/X group intermolecular exchange in the [PdBr(PH3)(C6H5)(C6H5X)] system, where X is either H, an electropositive atom, or a group such as Li, Na, BH2, AlH2, BeH or BeCH3, and an electronegative atom, or a group such as F, Cl, Br, CH3, OH, and SH. The transfer of H is best viewed as involving the migration of a proton between the two phenyls. At variance with this result, the transfer of the more electropositive entities such as X = Li, Na, BH2, AlH2, BeH, or BeCH3 is not complete. It stops halfway to yield a stable structure in which X can experience interactions with the two phenyl groups that are quite ionic. These stable structures are rationalized through isolobal analogy arguments. In the case of beryllium, the correspondence has been made also with the experimentally known cyclopentadienylberyllium borohydride system, CpBeH4. The results of the DFT geometry optimization call for a re-examination of the gas-phase electron-diffraction structure determination, especially for the bond distances and angles that pertain to the two bridging hydrogens. For the halogen series X = F, Cl, or Br and for the electronegative groups CH3, OH, or SH, the transfer between the two phenyls takes place via a two-step Pd(II)/Pd(IV) oxidative addition/reductive elimination mechanism. The associated energy barriers are nevertheless quite high, except for Br and SH for which the process might be feasible. The dimerization of the PdBr(PH3)(C6H5) system is also analyzed within the isolobal analogy framework.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献