ECE-1 influences prostate cancer cell invasion via ET-1-mediated FAK phosphorylation and ET-1-independent mechanismsThis article is one of a selection of papers published in the two-part special issue entitled 20 Years of Endothelin Research.

Author:

Whyteside A. R.1,Hinsley E. E.1,Lambert L. A.1,McDermott P. J.1,Turner A. J.1

Affiliation:

1. Institute of Molecular and Cellular Biology, University of Leeds, Faculty of Biological Sciences, Leeds LS2 9JT, United Kingdom.

Abstract

Plasma concentrations of the mitogenic peptide endothelin-1 (ET-1) are significantly elevated in men with metastatic prostate cancer (PC). ET-1 also contributes to the transition of hormonally regulated androgen-dependent PC to androgen-independent disease. ET-1 is generated from big-ET-1 by endothelin-converting enzyme (ECE-1). ECE-1 is present in PC cell lines and primary tissue and is elevated in primary malignant stromal cells compared with benign. siRNA or shRNA-mediated knockdown of endogenous ECE-1 in either the epithelial or stromal compartment significantly reduced PC cell (PC-3) invasion and migration. The re-addition of ET-1 only partially recovered the effect, suggesting ET-1-dependent and -independent functions for ECE-1 in pPC. The ET-1-independent effect of ECE-1 on PC invasion may be due to modulation of downstream signalling events. Addition of an ECE-1 specific inhibitor to PC-3 cells reduced phosphorylation of focal adhesion kinase (FAK), a signalling molecule known to play a role in PC. siRNA-mediated knockdown of ECE-1 resulted in a significant reduction in FAK phosphorylation. Accordingly, transient ECE-1 overexpression in PNT1-a cells increased FAK phosphorylation. In conclusion, ECE-1 influences PC cell invasion via both ET-1-mediated FAK phosphorylation and ET-1 independent mechanisms.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3