Transcriptomic characterization elucidates a signaling network that controls antler growth

Author:

Yao Baojin1,Zhang Mei2,Liu Meixin1,Liu Yuxin1,Hu Yaozhong1,Zhao Yu1

Affiliation:

1. Chinese Medicine and Bioengineering Research and Development Center, Changchun University of Chinese Medicine, Changchun 130117, China.

2. Innovation Practice Center, Changchun University of Chinese Medicine, Changchun 130117, China.

Abstract

Deer antlers are amazing appendages with the fastest growth rate among mammalian organs. Antler growth is driven by the growth center through a modified endochondral ossification process. Thus, identification of signaling pathways functioning in antler growth center would help us to uncover the underlying molecular mechanism of rapid antler growth. Furthermore, exploring and dissecting the molecular mechanism that regulates antler growth is extremely important and helpful for identifying methods to enhance long bone growth and treat cartilage- and bone-related diseases. In this study, we build a comprehensive intercellular signaling network in antler growth centers from both the slow growth stage and rapid growth stage using a state-of-art RNA-Seq approach. This network includes differentially expressed genes that regulate the activation of multiple signaling pathways, including the regulation of actin cytoskeleton, calcium signaling, and adherens junction. These signaling pathways coordinately control multiple biological processes, including chondrocyte proliferation and differentiation, matrix homeostasis, mechanobiology, and aging processes, during antler growth in a comprehensive and efficient manner. Therefore, our study provides novel insights into the molecular mechanisms regulating antler growth and provides valuable and powerful insight for medical research on therapeutic strategies targeting skeletal disorders and related cartilage and bone diseases.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3