Phase transitions in finite systems

Author:

Pathria R. K.

Abstract

Mathematical singularities, which are known to be at the heart of phase transitions and are responsible for making the thermodynamic functions of the given system nonanalytic, are a consequence of the thermodynamic limit, viz. N and V → ∞ with N/V staying constant. When a system containing a finite number of particles and confined to a restricted geometry undergoes a phase transition, these singularities get rounded off, with the result that all thermodynamic functions become analytic and vary smoothly with the relevant parameters of the problem. Theoretical analysis of such situations requires the use of special mathematical techniques which may vary drastically from case to case.In the present communication we report the results of a rigorous analysis of the problem of "Bose–Einstein condensation in restricted geometries", which has been carried out by making an extensive use of the Poisson summation formula. Particular emphasis is laid on the growth of the condensate fraction [Formula: see text] as the temperature of the system is lowered, and on the influence of the boundary conditions imposed on the wave functions of the particles. The relevance of these results, in relation to the scaling theory of finite size effects, is also discussed.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Counterfactual thermodynamics: Extracting work from a lack of macroscopic change;Physica A: Statistical Mechanics and its Applications;2022-05

2. Bibliography;Statistical Mechanics;2022

3. Appendices;Statistical Mechanics;2022

4. Ideal Bose systems;Statistical Mechanics;2022

5. Finite-size effects on the cluster expansions for quantum gases in restricted geometries;Physica Scripta;2020-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3