Thermal kinetics, thermodynamics, decomposition mechanism, and thermal safety performance of typical ammonium perchlorate-based molecular perovskite energetic materials

Author:

An Erhai1,Chen Shaoli2,Li Xiaoxia1,Tan Yingxin1,Cao Xiong1,Deng Peng13

Affiliation:

1. School of Environment and Safety Engineering, North University of China, Taiyuan, Shanxi 030051, People’s Republic of China.

2. Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi 710065, People’s Republic of China.

3. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, People’s Republic of China.

Abstract

In this work, we report the thermal kinetics, thermodynamics, and decomposition mechanism of AP-based molecular perovskite energetic materials and estimate their thermal safety performance. Typical AP-based molecular perovskite energetic materials, (H2dabco)[NH4(ClO4)3] (DAP-4), (H2pz)[NH4(ClO4)3](PAP-4), (H2mpz)[NH4(ClO4)3](PAP-M4), and (H2hpz)[NH4(ClO4)3] (PAP-H4), were synthesized and characterized. These were studied using differential scanning calorimetry (DSC). The results show that all of the obtained AP-based molecular perovskite energetic materials have higher thermal decomposition temperatures, and the peak temperatures are more than 360 °C. All follow random nucleation and growth models. Other thermodynamic parameters, such as the reaction enthalpy (ΔH), entropy change (ΔS), and Gibbs free energy (ΔG), show that they are generally thermodynamically stable. Moreover, their adiabatic induced temperatures were obtained; TD24 of DAP-4, PAP-4, PAP-M4, and PAP-H4 were 246.6, 201.2, 194.5, and 217.5 °C, respectively. This study offers an important and in-depth understanding of the thermal decomposition characteristics of AP-based molecular perovskite energetic materials and their potential applications.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3