Affiliation:
1. School of Environment and Safety Engineering, North University of China, Taiyuan, Shanxi 030051, People’s Republic of China.
2. Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi 710065, People’s Republic of China.
3. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, People’s Republic of China.
Abstract
In this work, we report the thermal kinetics, thermodynamics, and decomposition mechanism of AP-based molecular perovskite energetic materials and estimate their thermal safety performance. Typical AP-based molecular perovskite energetic materials, (H2dabco)[NH4(ClO4)3] (DAP-4), (H2pz)[NH4(ClO4)3](PAP-4), (H2mpz)[NH4(ClO4)3](PAP-M4), and (H2hpz)[NH4(ClO4)3] (PAP-H4), were synthesized and characterized. These were studied using differential scanning calorimetry (DSC). The results show that all of the obtained AP-based molecular perovskite energetic materials have higher thermal decomposition temperatures, and the peak temperatures are more than 360 °C. All follow random nucleation and growth models. Other thermodynamic parameters, such as the reaction enthalpy (ΔH), entropy change (ΔS), and Gibbs free energy (ΔG), show that they are generally thermodynamically stable. Moreover, their adiabatic induced temperatures were obtained; TD24 of DAP-4, PAP-4, PAP-M4, and PAP-H4 were 246.6, 201.2, 194.5, and 217.5 °C, respectively. This study offers an important and in-depth understanding of the thermal decomposition characteristics of AP-based molecular perovskite energetic materials and their potential applications.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献