Electrochemically deposited molecular thin films on transparent conductive oxide substrate: combined DC and AC approaches for characterization

Author:

Gupta Ritu11,Jash Priyajit11,Pritam Anurag11,Mondal Prakash Chandra11

Affiliation:

1. Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.

Abstract

Transparent conductive oxides such as indium tin oxide (ITO) substrates are commonly employed as prime materials for optoelectronic applications. Enhancement in functions of such devices often compels stable and robust modification of the ITO substrate to improve its interfacial charge transfer characteristics. Thereby, in this work, naphthyl modifier multilayer films are fabricated on ITO substrate using conventional electrochemical reduction of 1-naphthyl diazonium salts (NAPH-D) via altering its concentration ranging from 2 mM to 12 mM with a step size of 2. Surface coverage was significantly tuned by varying NAPH-D concentration, keeping other parameters such as the number of scans and scan rate constant. For lower concentrations (2 mM), the molecular thickness ∼6 nm was obtained, whereas higher concentrations (12 mM) produced around 15–18 nm thickness. Atomic force microscopy (AFM), cyclic voltammetry, and electrochemical impedance spectroscopy (EIS) in the presence of a ferrocene redox probe also supports the formation of well packed molecular film grown on the ITO surface. Further, the wettability property of the grafted naphthyl film was investigated at different surface coverages and correlated with charge transfer resistance (RCt) obtained from EIS studies.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3