Pd–Ni bimetallic nanoparticles supported on TiO2 as an efficient catalyst for catalytic transfer hydrodeoxygenation of guaiacol

Author:

Faturachman Ilham12,Kurniawan Hendris Hendarsyah1,Yunarti Rika Tri2ORCID,Widjaya Robert Ronal1,Dwiatmoko Adid Adep1ORCID,Maryati Yati1,Rinaldi Nino1

Affiliation:

1. Research Center for Chemistry, National Research and Innovation Agency (BRIN), Puspiptek Area, Serpong, Tangerang Selatan 15314, Indonesia

2. Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia

Abstract

Bio-oil is a sustainable energy source, produced from pyrolysis of lignocellulosic materials or algae. It is, however, difficult to directly use the bio-oil for fuels due to several drawbacks, such as its viscosities and high oxygen content. One of the ways to solve this is upgrading of the bio-oil through hydrodeoxygenation (HDO). In this study, guaiacol was used as a bio-oil model compound in HDO reaction via catalytic transfer hydrogenation. The reaction was conducted in the presence of TiO2-supported palladium catalysts, with isopropyl alcohol as a hydrogen source. Nickel and molybdenum were added into the Pd catalyst to investigate their effects on the catalyst activity. The prepared catalysts were characterized using XRD, N2 physisorption, hydrogen temperature-programmed reduction, and transmission electron microscopy. HDO reaction was carried out using a pressurized batch reactor at 250 °C for 1 h with 30 bar of helium. Liquid products were analyzed by GC–MS and GC–FID to identify and quantify the conversions and product yields. The result showed that the presence of nickel on the catalyst could improve the catalytic activity of Pd/TiO2. Guaiacol conversion over Pd–Ni/TiO2 was 32.2%, while the conversion of guaiacol over Pd/TiO2 was only 17.9%. In addition, Pd–Ni/TiO2 showed good selectivity to produce cyclohexanol, while Pd/TiO2 showed good selectivity to produce one oxygenated compound such as 2-methylphenol and phenol.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3