Mechanistic studies on the conversion of NO gas on urea-iron and copper metal organic frameworks at low temperature conditions: in situ infrared spectroscopy and Monte Carlo investigations

Author:

Eid A.M.11,Rahman Mohammad A.11,Al-Abadleh Hind A.11

Affiliation:

1. Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada.

Abstract

Nitrogen oxide (NOx) emissions from high-temperature combustion processes under fuel-lean conditions continue to be a challenge for the energy industry. Selective catalytic reduction (SCR) is possible using metal oxides and zeolites. There is still a need to identify catalytic materials that are efficient in reducing NOx to environmentally benign nitrogen gas at temperatures lower than 200 °C. Metal-organic frameworks (MOFs) have emerged as a class of highly porous materials with unique physical and chemical properties. This study is motivated by the lack of systematic investigations on SCR using MOFs under industrially relevant conditions. Here, we investigate the extent of NO conversion with two commercially available MOFs, Basolite F300 (Fe-BTC) and HKUST-1 (Cu-BTC), mixed with solid urea as a source for the reductant, ammonia gas. For comparison, experiments were also conducted using cobalt ferrite (CoFe2O4) as a non-porous counterpart to relate its reactivity to those obtained from MOFs. Fourier-transform infrared spectroscopy (FTIR) was utilized to identify the gas and surface species in the temperature range of 115–180 °C. Computational analysis was performed using Monte Carlo simulations to quantify the adsorption energies of different surface species. The results show that the rate of ammonia production from the in situ solid urea decomposition was higher using CoFe2O4 than Fe-BTC and Cu-BTC and that there was very limited conversion of NO on the mixed solid urea-MOF systems due to site blocking. The main conclusions from this study are that MOFs have limited ability to convert NO under low-temperature conditions and that surface regeneration requires additional experimental steps.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3