Application and validation of a numerical model of flow through embankment dams with fractures: comparisons with experimental data

Author:

Billstein Mats,Svensson Urban,Johansson Nils

Abstract

The focus of this paper is on the development and validation of a numerical model of flow through simplified embankment dams with fractures. Two laboratory experiments were conducted to provide data for validation of the numerical model, one dealing with steady flow in a Hele-Shaw cell and one with steady flow through a bed of packed glass beads. A horizontal fracture, extending from the upstream boundary to a point within the embankment, was used in both experiments, and it was shown to have a significant influence on the discharge, pressure distribution, height of the seepage face, and free surface profile. Comparisons between numerically determined and experimentally measured results were carried out with respect to the discharge, pressure distribution, height of the seepage face, and free surface profile. In the experiments it is shown that a fracture increases the discharge and that the discharge increases more when a fracture is located far away from the free surface profile than when it is located close to the free surface profile. The height of the seepage face above the tailwater is strongly dependent upon the length of the fracture. The influence on the free surface profile is greater when a fracture is close to the free surface profile than when it is far away from the free surface profile. These effects are also found in the numerical simulations. It is thus concluded that the agreement is generally satisfactory between the experimental and numerical results.Key words: numerical model, embankment dam, fracture, experimental data, discharge.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical Simulation of a Single-Phase Flow Through Fractures with Permeable, Porous and Non-Ductile Walls;Engineering, Technology & Applied Science Research;2017-10-19

2. Effect of Homogeneous Earth Dam Hydraulic Conductivity Ratio (K x /K y ) with Horizontal Drain on Seepage;Indian Geotechnical Journal;2013-12-28

3. Seepage through a Levee;International Journal of Geomechanics;2005-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3