Postexercise heart rate recovery in children: relationship with power output, blood pH, and lactate

Author:

Buchheit Martin1234,Duché Pascale1234,Laursen Paul B.1234,Ratel Sébastien1234

Affiliation:

1. Research Laboratory, EA 3300, Exercise physiology and rehabilitation, Faculty of Sport Sciences, University of Picardie, Jules Verne, Amiens, France.

2. Performance Enhancement and Talent Identification Section, Aspire, Academy for Sports Excellence, Doha, Qatar.

3. Clermont Université, Université Blaise Pascal, EA 3533, Laboratoire de Biologie des Activités Physiques et Sportives, BP 104, 63000 Clermont-Ferrand, France.

4. New Zealand Academy of Sport North Island, Auckland, New Zealand; Division of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.

Abstract

The aim of the present study was to determine whether differences in age-related heart rate recovery (HRR) kinetics were associated with differences in power output, blood lactate concentration ([La]b), and acidosis among children, adolescents, and adults. Ten prepubertal boys (aged 9.6 ± 0.7 years), 6 pubertal boys (aged 15.2 ± 0.8 years), and 7 men (aged 20.4 ± 1.0 years) performed 10 repeated 10-s all-out cycling sprints, interspersed with 5-min passive recovery intervals. Mean power output (MPO) was measured during each sprint, and HRR, [La]b, and acidosis (pHb) were determined immediately after each sprint. Children displayed a shorter time constant of the primary component of HRR than adolescents and adults (17.5 ± 4.1 vs. 38.0 ± 5.3 and 36.9 ± 4.9 s, p < 0.001 for both), but no difference was observed between adolescents and adults (p = 1.00). MPO, [La]b, and pHb were also lower in children compared with the other 2 groups (p < 0.001 for both). When data were pooled, HRR was significantly correlated with MPO (r = 0.48, p < 0.001), [La]b (r = 0.58, p < 0.001), and pHb (r = –0.60, p < 0.001). Covarying for MPO, [La]b, or pHb abolished the between-group differences in HRR (p = 0.42, p = 0.19, and p = 0.16, respectively). Anaerobic glycolytic contribution and power output explained a significant portion of the HRR variance following high-intensity intermittent exercise. The faster HRR kinetic observed in children appears to be related, at least in part, to their lower work rate and inherent lack of anaerobic metabolic capacity.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3